
NOTICE OF CHANGE
NOT MEASUREMENT

SENSITIVE
MIL-STD-2407
NOTICE 1

26 October 1999

DEPARTMENT OF DEFENSE
INTERFACE STANDARD

VECTOR PRODUCT FORMAT

TO ALL HOLDERS OF MIL-STD-2407:

1. THE FOLLOWING PAGES OF MIL-STD-2407 HAVE BEEN REVISED AND SUPERSEDE THE
PAGES LISTED:

NEW PAGE DATE SUPERSEDED PAGE DATE
23 26 October 1999 23 28 June 1996
24 26 October 1999 24 28 June 1996
43 26 October 1999 43 28 June 1996
44 28 June 1996 44 Reprinted

without change
45 28 June 1996 45 Reprinted

without change
46 26 October 1999 46 28 June 1996
53 28 June 1996 53 Reprinted

without change
54 26 October 1999 54 28 June 1996
79 26 October 1999 79 28 June 1996
80 28 June 1996 80 Reprinted

without change
121 26 October 1999 121 28 June 1996
122 26 October 1999 122 28 June 1996
123 26 October 1999 123 28 June 1996
124 28 June 1996 124 Reprinted

without change
159-172 26 October 1999 159-172 28 June 1996

Appendix F

2. RETAIN THIS NOTICE AND INSERT BEFORE TABLE OF CONTENTS.

3. Holders of MIL-STD-2407 will verify that page changes and additions
indicated above have been entered. This notice page will be retained as a
check sheet. This issuance, together with appended pages, is a separate
publication. Each notice is to be retained by stocking points until the
standard is completely revised or canceled.

AMSC N/A AREA MCGT

Custodians: Preparing activity:
Army – TI NIMA – MP
Navy – NO (Project MCGT-0338)
Air Force – 09

Review activity:
Marine Corps - MC

MIL-STD-2407

SUPERSEDES PAGE 23 OF MIL-STD-2407

23

row ids shall start at 1 and be sequential with no gaps in the
numbering. TABLE 2 depicts the principal components of a VPF
table.

TABLE 2. VPF table structure.

Table Header
 Metadata and column definitions:

a. Table description
b. Narrative table name (optional)
c. Column definitions:

Column name
Field type
Field length
Key type
Column textual description
Optional value description table name
Optional thematic index name
Optional column narrative table name

 id table contents
 Indicates the starting The data composing the table
position of each row. that match the column

definitions.

This document describes the column definitions for all the VPF
standard–specified columns, and the table organization for
those columns. No specific ordering of columns within a table
is required. Product specifications may require a particular
product-specific order. Data columns and tables described in
this document are labeled either mandatory or optional. A VPF
product must include all mandatory tables and columns. It is
not possible to remove any mandatory column from any table. A
VPF-compliant application must be able to process a VPF
product and interpret all mandatory and optional columns as
described in this document.

Additional product-specific columns are allowed by VPF. If
present, these columns must be defined in their product
specifications. Product-specific columns must not alter the
use of the columns specified in this document.

5.2.1.4 Indexes. A table may have associated indexes.
If a table contains a variable-length coordinate string
column, a variable-length string column, or a field type “K”
(triplet id), a separate variable-length index file must be
present.

MIL-STD-2407

SUPERSEDES PAGE 24 OF MIL-STD-2407

24

In addition to variable-length indexes, VPF also supports
spatial, thematic, and feature indexes. Spatial indexes
contain references to row data that are based on the value of
a coordinate column. Thematic indexes contain references to
row data that are based on the value of non-coordinate
columns. Feature indexes have been developed to enhance
processing of complex queries. They contain references
linking rows in primitive tables to rows in associated feature
tables.

5.2.1.5 Narrative tables Each VPF table may have an
associated narrative table that provides miscellaneous
information about the VPF table. The purpose of the narrative
table is to provide the database designer with the ability to
record comments or information pertinent to the associated
table. The narrative table name is stored in the VPF table’s
header information. In addition, VPF provides for optional
narrative tables keyed to individual columns within a table.
The narrative table name is stored as the third optional entry
in the column definition (see TABLE 2).

5.2.1.6 Attribute tables. Real-world objects are
referred to as entities or features; they are modeled in
tables in VPF. The properties of entities are called
attributes. In an attribute table, one table column is
defined for each attribute describing an object. Each object
occupies a row in the table. Examples of attributes include
data quality, size, and name. A sample attribute table is
shown in TABLE 3.

A column or a group of columns that can be used to identify or
select a row is called a key. A unique key is a key that
uniquely identifies each row. One unique key is designated
the primary key; each table has one and only one primary key.
In the city attribute table (TABLE 3), the built-up area
column is the primary key.

TABLE 3. City attribute table.

158706
110561
49108

 84899

26365000
936000

17783000
 1645000

1
2
3
4

California
Nevada

New York
Utah

Area
(sq. mi.)

Total
Population

implicit character string binary integer binary integer

PRIMARY KEY (Not a key) (Not a key)

id state
built-up

area
population

size

median
income per
household

implicit
character
string

character
string

binary
integer

binary
integer

PRIMARY KEYUNIQUE KEY NON-UNIQUENON-UNIQUE NON-UNIQUE

1
2
3
4
5

Los Angeles
New York

Salt Lake City
Las Vegas

San Francisco

California
New York

Utah
Nevada

California

2966850
7071639
163033
164674

1366383

15735
13854
13211
17468
16782

MIL-STD-2407

SUPERSEDES PAGE 43 OF MIL-STD-2407

43

a. Edges: When an edge is broken by a tile boundary a
connected node is placed at the edge-tile intersection. The
identical (in terms of a geographical coordinate tuple)
connected node occurs in all adjacent tiles forming the
boundary. All edges which lie along a tile boundary, will
have cross-tile topology. The identical (in terms of a
geographical coordinate tuple) edge occurs in both tiles
forming the boundary.

b. Faces: A face broken by a tile boundary has a new edge
constructed and inserted at the boundary for each tile to
close the face internal to the tile. These edges take part
in cross-tile topology.

c. Face 1: Face 1 (universe face) represents a special case
for tile boundaries. In those cases where face 1 is the
only face being broken, actual tile boundaries will not be
stored. For example, where face 2 is broken by the tile
boundary and the rest of the tile is defined by face 1, only
the tile boundary edges necessary to close face 2 are stored
(FIGURE 13).

d. Connected Nodes: All connected nodes which lie on a tile
boundary will have cross-tile components (tile_id and
first_edge).

Two other situations to consider are that of a tile of a level
3 topology coverage which contains only point features or no
features. In these cases, the tile contains either entity
node primitives and face 1 or simply face 1, respectively.
Level 3 topology requires inclusion of a face, ring, edge,
connected node and face bounding rectangle table, and an edge
variable-length index (TABLE 8). The face, ring and face
bounding rectangle tables will reference the universe face
(face 1) only. The edge table must exist since it is
referenced by the ring table. The connected node table must
exist since it is referenced by the edge table. The existence
of an edge table requires an edge variable-length index and
the existence of a face table requires a face bounding
rectangle table. The edge and connected node table and the
edge variable-length index will contain no records. See TABLE
below for this scenario.

fac table
id dnarea.aft_id ring_ptr
1 (-2147483648) 1

rng table
id fac_id start_edge
1 1 (-2147483648)

MIL-STD-2407

REPRINTED WITHOUT CHANGE

44

fbr table
id x min y min x max y max
1 (null) (null) (null) (null)

edg table
id dnline.lft_id sn en rf lf coordinates

(no records---header information only)

cnd table
id dnpoint.pft_id containing_face first_edge coordinates

(no records---header information only)

end table
id dnpoint.pft_id containing_face coordinates
1 1 1 37.5, -76.5
2 5 1 39.0, -80.0

FIGURE 13. Storage of tile boundaries.

Face 1

Face 2

2

1

3

4

Note: Face 1 is the universe
face. The tile’s edge file will
only store edges 1,2,3 and 4. The
dashed edges for the universe face
are implied, but not stored.

MIL-STD-2407

REPRINTED WITHOUT CHANGE

45

Untiled
Coverage

Tiled
 Coverage

 Tile ID=2 Tile ID=3

 Tile ID=4 Tile ID=5 Tile ID=6

 Tile ID=7 Tile ID=8 Tile ID=9

Tiles

 Tile ID=1

FIGURE 14. A tiling scheme.

5.2.2.3.4 Cross-tile keys. VPF provides a mechanism for
maintaining geographic features in a logically continuous spatial
database, whether or not a tiling scheme is present. Since the
primitives in each tile of a tiled coverage are managed separately
from those in other tiles, labels given to primitives are unique
only within a tile. In order to support a logically continuous
spatial database, a triplet id can be used instead of an integer
key to reference primitives across multiple tiles. The triplet id
augments the key of a primitive with the key of the tile in which
the primitive falls. APPENDIX B contains a discussion that fully
describes this concept.

a. For an edge primitive, the triplet id is used to maintain
cross-tile topology. The Left Face, Right Face, Left Edge, and
Right Edge columns are defined as triplet ids to support tiled
coverages. The triplet id contains a reference to the internal
topology within the current tile; the two other components
reference the external tile directory and the primitive within
that tile. For example, for a face divided by a tile boundary,
the external id portion of the Left Face field in FIGURE 15 would
include the continuing face in the other tile. This inclusion of
internal and external tile references allows software to detect
tile borders and continue operations across boundaries

MIL-STD-2407

SUPERSEDES PAGE 46 OF MIL-STD-2407

46

or to operate only within the current tile. If a coverage is
untiled, the left face, right face, left edge, and right edge
columns may be defined as integer columns; otherwise the
external tile id and primitive id sub-fields of the triplet id
will not exist (see 5.4.6).

b. For a connected node in a tiled coverage the triplet
id is applied to the first_edge column.

c. Cross-tile topology only occurs between tiles within
a library. Cross-tile components will only be populated for
edges intersecting tile boundaries within a library. There is
no cross-tile topology between tiles in different libraries.

MJ22MJ12

MJ11 MJ21

MJ12

3

Node

Edge

Face

Tile

Tile boundary

3

5
4

97

FIGURE 15. Face cross-tile matching.

5.2.2.4 Library. A library is a collection of
coverages that share a single coordinate system and scale,
have a common thematic definition, and are contained within a
specified spatial extent. If any of the coverages composing
the library are tiled, then all other coverages must either
use the same tiling scheme, or be untiled. The contents and
organization of the libraries are determined by a product
specification. All of the tables and coverages making up the
library are contained within a single master directory (FIGURE
16).

MIL-STD-2407

REPRINTED WITHOUT CHANGE

53

5.3.1.2 Reserved table names and extensions. Each VPF
table name consists of a reserved name or suffix extension.
TABLE 13 lists the tables whose names cannot be modified or
changed.

There are a few reserved directory names at the library and
database levels. These names are listed in TABLE 14.

In a coverage directory, there are many feature class tables
that have reserved suffixes. The product specification may
define any eight-character prefix, following the naming
conventions detailed in section 5.4.5. TABLE 15 lists the
table suffixes.

TABLE 13. Reserved file names.

File Name Description
cat Coverage Attribute Table
cnd Connected Node Primitive
csi Connected Node Spatial Index
dht Database Header Table
dqt Data Quality Table
ebr Edge Bounding Rectangle
edg Edge Primitive
end Entity Node Primitive
esi Edge Spatial Index
fac Face Primitive
fbr Face Bounding Rectangle
fca Feature Class Attribute Table
fcs Feature Class Schema Table
fsi Face Spatial Index
grt Geographic Reference Table
lat Library Attribute Table
lht Library Header Table
nsi Entity Node Spatial Index
rng Ring Table
txt Text Primitive
tsi Text Spatial Index

char.vdt Character Value Description Table
int.vdt Integer Value Description Table

MIL-STD-2407

SUPERSEDES PAGE 54 OF MIL-STD-2407

54

TABLE 14. Reserved directory names.

Directory Name Description
libref Library reference coverage

dq Data quality coverage
tileref Tile reference coverage
gazette Names reference coverage

TABLE 15. Reserved table name extensions.

File Name Suffix Description
.abr Area Bounding Rectangle Table
.aft Area Feature Table
.ajt Area Join Table
.ati Area Thematic Index
.cbr Complex Bounding Rectangle Table
.cft Complex Feature Table
.cjt Complex Join Table
.cti Complex Thematic Index
.doc Narrative Table
.dpt Diagnostic Point Table
.fit Feature Index Table
.fti Feature Index Table Thematic Index
.jti Join Thematic Index
.lbr Line Bounding Rectangle Table
.lft Line Feature Table
.ljt Line Join Table
.lti Line Thematic Index
.pbr Point Bounding Rectangle Table
.pft Point Feature Table
.pjt Point Join Table
.pti Point Thematic Index
.rat Related Attribute Table
.rpt Registration Point Table
.tbr Text Bounding Rectangle Table
.tft Text Feature Table
.tjt Text Feature Join Table
.tti Text Thematic Index

Any table that contains variable-length records must have a
variable-length index associated with it. The index file
shall have the same file name as the table, except that the
last character will end with "x". For example, a variable-
length record road line table, road.lft, would have a
variable-length index road.lfx. The one exception to this
convention is for the fcs, whose variable-length index shall
be named fcz.

MIL-STD-2407

SUPERSEDES PAGE 79 OF MIL-STD-2407

79

5.3.6.2 Database header table. The database header
table (TABLE 46) contains information that defines database
content and security information.

TABLE 46. Database header table definition.

Column Name Description of Contents Column Type Key Type Op/Man

id Row id I P M

vpf_version VPF version number T,10 N M

database_name Directory name of the database T,8 N M

database_desc Text description of the database T,100 N M

media_standard Media standard used for the database T,20 N M

originator Text for title and address of T,* N M
originator (a backslash "\" is
used as a line separator)

addressee Text for title and address of T,* N M
addressee (a backslash "\" is used
as a line separator)

media_volumes Number of media volumes comprising T,* N M
the database

seq_numbers Sequential number(s) for each media T,* N M
volume in this database

num_data_sets Number of libraries within database T,* N M

security_class Security classification of database T,1 N M
(the highest security classification
of the transmittal including all
datasets within the database)
T = TOP SECRET
S = SECRET
C = CONFIDENTIAL
R = RESTRICTED (or alternatively
"FOR OFFICIAL USE ONLY")
U = UNCLASSIFIED

downgrading Originator’s permission for T,3 N M
downgrading required (yes or no)

downgrade_date Date of downgrading D N M

releasability Releasability restrictions T,20 N M

other_std_name Free text, note of other standards T,50 N O
compatible with this database

other_std_date Publication date of other standard D N O

other_std_ver Other standard amendment number T,10 N O

transmittal_id Unique id for this database T,* N M

edition_number Edition number for this database T,10 N M

edition_date Creation date of this database D N M

MIL-STD-2407

REPRINTED WITHOUT CHANGE

80

5.3.7 Data quality. The data quality table may be
stored at the database, library, or coverage level. It
contains information on the completeness, consistency, date
status, attribute accuracy, positional accuracy, and other
miscellaneous quality information. It also contains
information about the source from which the geographic data
was derived. Lineage information should be included in the
associated narrative table, named "LINEAGE.DOC." While the
contents and location of a data quality table within a VPF
database are product specific, it is highly recommended that
at least one table exist at the library level. TABLE 47
defines the contents of the data quality table. APPENDIX E
contains more information about storing data quality
information in VPF.

MIL-STD-2407

SUPERSEDES PAGE 121 OF MIL-STD-2407

121

below illustrates a depth first search. The algorithm is as
follows:

a. Locate current edge with user application (edge 12).

b. Read end node of current edge and gather all edges
incident at the node.

c. For each of the edges incident at the node, read the
attribute value from the associated line feature. Does
the attribute have the desired value? If so, continue
with step e.

d. Go to step c. Repeat with next edge.

e. Decision. Has the network been completely traversed?
If so, exit with complete network. If not, go to step
b.

B.4.4 Cross-tile topology. Network navigation using the
winged-edge topology can be extended to cross over physical
tile partitions, if they exist in the coverage. By using the
information in the previous examples, it becomes possible to
introduce cross-tile constructs. Assume that FIGURE 32 has been
intersected with tile boundaries and that the new coverage in
FIGURE 35 has been created (with generalized edges along edge 5
in FIGURE 32).

FIGURE 35 depicts a single face broken into four faces by the
intersection of four tiles. The following discussion
identifies several different occurrences at the tile boundaries
and covers retrieval of the original (untiled) face extent from
the tiled faces through winged-edge topology.

When creating cross-tile topology, the following rules apply:

a. An edge is always broken when it intersects a tile
boundary by placing a connected node at the intersection in
all adjacent tiles. See FIGURE 34, B,C,G and H. All edges
terminated by this connected node will have cross-tile
topology if an edge exists in the adjoining tile. See FIGURE
33 A through F.

b. The cross-tile edge will be the first edge in the
adjacent tile, counterclockwise from the referencing edge at
the node. See FIGURE 33, A through F.

c. All edges which are coincident with a tile boundary
(all coordinates for the edge are on the boundary) occur in
both tiles (see FIGURE 34, A, D, E and F) and have cross-tile
left or right face topology and have cross-tile left and right
edge topology. See FIGURE 33, A,B, D through F.

MIL-STD-2407

SUPERSEDES PAGE 122 OF MIL-STD-2407

122

 d. When a face is broken by a tile boundary, multiple
faces are created by closing the face along the tile boundary.
See FIGURE 34, A. The edges used to close faces on the
boundary are treated as in c. above. See FIGURE 33, B and E.

e. Connected nodes which occur on tile boundaries, exist
in all adjacent tiles (see FIGURE 34, B, C, G and H) and
reference both an internal and external first edge, if an edge
exists. The first edge is selected arbitrarily in both
internal and external tiles. If more than one tile is
adjacent, the external first edge is chosen arbitrarily from
the first tile counterclockwise containing one or more edges.

FIGURE 33. Cross-tile edge rules

B.A.

C. D.

E. F.

MIL-STD-2407

SUPERSEDES PAGE 123 OF MIL-STD-2407

123

The following are additional examples of tile boundary
primitive behavior:

E10

E10 E3

Untiled

Tiled

F4

F3 F7

E5

E5

E6

E7

E5

Untiled Tiled

F4

Untiled

F4

F7

E10

Tiled

A. Face broken B. Edge broken C. Edge ending D. Face ending
by tile boundary by tile boundary on tile boundary on tile boundary

E. Portion of a face coincident F. Edge coincident with
with tile boundary tile boundary

FIGURE 34. Tile boundary primitive behavior.

G. H.Edge cross es at tile corners Edge ends at tile corner

MIL-STD-2407

REPRINTED WITHOUT CHANGE

124

3
G

1

LEGEND

MJ12

Left Face
Face,Tile,ExFace

1,-,-

1,-,-

7,-,-

1,MJ12,9

1,MJ21,2

Start
Node

A

B

D

D

E

End
Node

B

C

C

E

A

Right Face
Face,Tile,ExFace

7,-,-

7,-,-

1,-,-

7,-,-

7,-,-

Right Edge
Edge,Tile,ExEdge

2,-,-

3,-,-

2,-,-

5,MJ21,2

1,MJ21,1

Left Edge
Edge,Tile,ExEdge

5,MJ21,1

1,-,-

4,MJ12,3

3,MJ12,1

4,MJ21,3

TILE MJ21

TILE MJ22

ID

1

2

3

4

5

Coordinates

Not
Shown

ID

1

2

3

Start
Node

A

B

C

End
Node

B

C

A

Face,Tile,ExFace

2,-,-

2,-,-

2,-,-

Left Face
Face,Tile,ExFace

1,-,-

1,MJ22,7

1,MJ11,6

Right Edge
Edge,Tile,ExEdge

2,MJ22,5

3,MJ11,7

1,MJ11,6

Left Edge
Edge,Tile,ExEdge

3,MJ11,6

1,MJ22,1

2,MJ11,8

Coordinates

Not
Shown

Tile
Name

Tile
Edge
Boundary

Face

Node

Edge

Right Face

MJ21

MJ22

A

B

C

G

C

DA

B

C
1

6

2

4

3
5

A

1
2

MJ12

MJ11 3

2

A

B

E

1

2

3

4

5
B

C

D4

3
79

D

E
F

H1

7

8

3

26

1

1

1
1

NOTE: Tile names are shown for clarity. The triplet id actually
contains the tile id.

FIGURE 35. Cross-tile edge example.

a. Start with tile MJ21, edge 1. Read the left edge.
Choose to cross into tile MJ11, edge 6.

b. Chain from edge 6, 5, 4, 3, 2, and 1 within tile MJ11.
c. From edge 1 in MJ11, go across to tile MJ12, edge 1.
d. From edge 1 in MJ12, cross tiles into tile MJ22, edge 3.
e. Chain through edges 3, 2, and 1.
f. From edge 1 in MJ22, cross into tile MJ21, edge 1.
g. When the end of the face cycle is reached, exit.

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 159 OF MIL-STD-2407

159

SPATIAL INDEXING

F.1. GENERAL

F.1.1 Scope. This appendix provides information and
discussion concerning spatial indexes in a VPF database. The
information contained in this standard shall be used by the
Military Departments, Office of the Secretary of Defense,
Organizations of the Joint Chiefs of Staff and the Defense
Agencies of the Department of Defense (collectively known as
DoD Components) in preparing and accessing digital geographic
data required or specified to be in vector product format.

F.2. APPLICABLE DOCUMENTS

This section is not applicable to this appendix.

F.3. DEFINITIONS

For purposes of this appendix, the definitions of section
3 of the main document shall apply.

F.4. GENERAL INFORMATION

F.4.1 Introduction. Spatial queries are queries in
which the user points at a specific position on a display
device containing a graphic representation of the data and
asks (for example) "What is this line?" In order to answer
the spatial query, any software that conducts a spatial query
on a VPF database must search the edge primitive table for an
exact match with "this line." Without a spatial index, the
software would have to search every vertex of every edge
sequentially for the correct response.

The purpose of a spatial index is to improve the speed with
which software can retrieve a specific set of row ids from a
primitive table. If the database contains spatial indexes,
the software, when given a spatial query like, "What are the
features within this bounding region?" can quickly retrieve
the primitives that match the query. For each primitive
(face, edge, entity node, connected node, and text), there can
exist a spatial index file: fsi, esi, nsi, csi, or tsi (see
section 5.4.2).

F.4.2 Categories of spatial decomposition. The spatial
index is the second of four categories of spatial
decomposition of a VPF database. The other three are the tile
directory, the minimum bounding rectangle of the edge and face
primitives, and the primitive coordinates. All four
categories of spatial decomposition are described below.

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 160 OF MIL-STD-2407

160

F.4.2.1 Tile directory. Tiles in an implementation of
VPF maintain spatially distributed primitives in separate
directories. Thus, software developed for a tiled VPF
database can search for data in only the relevant tile after
the appropriate tile has been identified.

F.4.2.2 Spatial index. The second step in a typical
software query is to use the appropriate index file (if one
has been created within the database design). It is
recommended that spatial index files associated with the
primitives be created for every product implementation of VPF.
Spatial indexes are discussed further below.

F.4.2.3 Minimum bounding rectangle (MBR). VPF requires
that face and edge primitives have associated bounding
rectangle table files—FBR and EBR. These tables allow the
rapid retrieval of the primitives' spatial extent and are used
by the software after the spatial index routine generates the
primitive ids for the current spatial query. The bounding
rectangle coordinates are typically used by the software to
check the validity of the primitive ids in satisfying the
query.

F.4.2.4 Primitive coordinates. It is necessary for
software to exhaustively check nodes and text primitives for
satisfaction of a spatial query, since these primitives do not
have associated minimum bounding rectangles. The coordinate
of the primitive is thus used to ensure the accurate retrieval
of primitive ids output from the spatial index.

F.4.3 VPF spatial index file. The spatial index file
internal structure in VPF is based on an adaptive grid binary
tree. This method is powerful because it can handle all types
of spatial queries (point, line, and area). The input
primitives are broken down into a grid-based binary tree. At
each cell (of the tree) there is a list of primitive MBRs and
a list of the primitive ids that are found at this level of
the tree.

The tree is created by storing primitive ids at a cell of the
tree. "Bucket size" is the number used to determine when to
split a cell and is defined by the product specification. A
typical bucket size is eight (8). If the cell fills to the
bucket size, then the cell is split into right and left (or
top and bottom) children of the cell. The primitive ids are
then distributed down into either child depending on the
primitive MBRs. Only if a primitive MBR intersects the
adjoining child’s cell, will the primitive id remain in the
parent cell. Since primitives cannot be split between two
cells, the number of primitives stored in a cell may exceed
the bucket size. The process of splitting cells and
distributing primitives based on each primitive's MBR and the

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 161 OF MIL-STD-2407

161

bucket size continues until no cell requires splitting or the
subdivision process reaches single dimensioned cells(max and
min x,y are equal). See F.4.3.2 below for further detail on
the spatial index coordinate system. Product Specifications
may limit the number cells in the grid-based binary tree for
performance reasons (see F.4.4.1)

When examined spatially, the spatial index divides a tile into
sub elements (the cells of the tree); FIGURE 51. Each split
results in dividing the parent cell into half. The first
split is into right and left halves, with the left half x-axis
ranging from 0 to 127 and the right half x-axis ranging from
128 to 255. The next split is into top and bottom halves,
with the bottom half y-axis ranging from 0 to 127 and the top
half y-axis ranging from 128 to 255. Splits then continue,
left/right and top/bottom, until the tree is complete.

The actual format of the spatial index file consists of the
following:

a. A header containing the number of primitives, the
minimum bounding rectangle of the entire spatial extent of the
tree, and the number of cells in the tree. Note that, in
tiled coverages, the MBR of the entire spatial extent of the
tree will coincide with the tile boundary in topology level
three coverages for face spatial indices (fsi), edge spatial
indices (esi), connected node spatial indices (csi), and text
spatial indices (tsi). In untiled topology level three
coverages, the entire spatial extent of the tree will coincide
with the coverage extent. However, there is no reason to
force the tile boundary as the spatial extent of the grid-
based binary tree for entity node spatial indices (nsi) or for
coverages with topology levels less than three. In fact,
using the primitives MBR as the spatial extent of the tree
rather than the tile boundary provides for a more efficient
spatial index. Although the example spatial index described
in this Appendix is for a tiled coverage, the concepts would
apply to an untiled coverage as well.

b. A bin array of the tree. Each bin contains two
items. A beginning location (offset from the end of the BIN
Array Record) for the cell’s data and the number of primitives
in the cell. All intermediate cells are listed, even if
empty. The offset for an empty cell equals zero. The last
entry in the bin array record is always a populated cell. The
final level of the tree is not forced to be balanced by
creating empty cells.

c. Data records for each primitive in the tree. There
is one record for each primitive in the tree. Each record
contains four 1-byte integers defining the MBR for a primitive
and that primitive’s id.

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 162 OF MIL-STD-2407

162

F.4.3.1 Tree navigation. For any cell, the cell from
which it was generated is the integer value obtained by
dividing by two. Thus, cell 3 points back to cell 1
[INT(3/2)], as does cell 2.

New cells created by splitting are numbered by multiplying the
current cell by two and adding one for the second new cell.
Thus, cell 2 becomes cells 4 and 5, and cell 3 becomes cells 6
and 7.

F.4.3.2 Spatial index coordinate system. The coordinate
system for the spatial index is based upon 1-byte integers, so
a primitive’s MBR must be converted to the spatial index
coordinate system. All coordinates are relative to the
southwest corner of the tile or of the MBR of the data extent
for the primitive type (see F.4.3a), and will range from 0 to
255. The minimum X and Y axis coordinate for each cell will
be zero (0) or an even integer. The maximum X and Y axis
coordinate for each cell will be an odd integer. The only
exception to this rule is at level 16, where
x-min = x-max and y-min = y-max. For any level of cell
decomposition, therefore, a single integer value will fall in
only one cell.

There is no single-line boundary between cells. The
number of cells and cell dimensions at each decomposition
level are shown below.

Decomposition
Level

Bins at
Level

Total bins
In Index

 Subdivision Cell X,Y
Dimension

Level 0 1 1 No partition 256 X 256
Level 1 2 3 Vertically 128 X 256
Level 2 4 7 Horizontally 128 X 128
Level 3 8 15 Vertically 64 X 128
Level 4 16 31 Horizontally 64 X 64
Level 5 32 63 Vertically 32 X 64
Level 6 64 127 Horizontally 32 X 32
Level 7 128 255 Vertically 16 X 32
Level 8 256 511 Horizontally 16 X 16
Level 9 512 1023 Vertically 8 X 16
Level 10 1024 2047 Horizontally 8 X 8
Level 11 2048 4095 Vertically 4 X 8
Level 12 4096 8191 Horizontally 4 X 4
Level 13 8192 16383 Vertically 2 X 4
Level 14 16384 32767 Horizontally 2 X 2
Level 15 32768 65535 Vertically 1 X 2
Level 16 65536 131071 Horizontally 1 X 1*

 * This represents a single dimensioned cell with the min
x,y equal to the max x,y.

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 163 OF MIL-STD-2407

163

Cell 1

Cell 2Cell 3

Cell 4Cell 5Cell 6Cell 7

Cell 8Cell 9Cell 10Cell 11Cell 12Cell 13Cell 14Cell 15

0
2550

255

0

255

127 128

255

0
0

255

0

127

0
0

127

127 1270
128 128

128128

255 255

255255

FIGURE 51. Spatial index cell decomposition.

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 164 OF MIL-STD-2407

164

F.4.4 Examples of spatial index creation. TABLE 69 is a
listing of the minimum (x1, y1) and maximum (x2, y2)
coordinates of the MBRs of 19 face primitives. The coordinate
values in TABLE 66

TABLE 69. Minimum and maximum coordinates for 19
primitives in a tile. Universe is primitive
number 1.

Primitive
ids

x1 (deg) y1 (deg) x2 (deg) y2 (deg)

1 Null Null Null Null
2 -5.00 54.63 -3.57 55.00
3 -5.00 52.00 -2.74 55.00
4 -5.00 54.91 -4.99 54.94
5 -5.00 54.76 -4.99 54.77
6 -4.80 54.06 -4.31 54.42
7 -3.28 54.05 -3.17 54.15
8 -0.71 53.54 0 53.74
9 -0.57 53.68 -0.53 53.69
10 -4.60 53.13 -4.05 53.43
11 -4.71 53.24 -4.56 53.33
12 -4.80 52.75 -4.78 52.77
13 -5.00 50.53 -2.35 51.82
14 -4.71 51.63 -4.68 51.65
15 -4.68 51.16 -4.65 51.20
16 -1.03 50.78 -0.95 50.84
17 -1.59 50.58 -1.08 50.77
18 -1.99 50.69 -1.96 50.70
19 -5.00 50.16 -4.99 50.17

are all in degrees. The primitives are all located within a
5- by 5-degree tile that has an MBR of (-5, 50), (0, 55). The
MBR coordinates can be converted to the spatial index
coordinate system as follows:

For minimum (x1,y1) and maximum (x2,y2) each new coordinate is
obtained from the integer truncation of

255*(Original coordinate – minimum)/(maximum –
minimum), which much be in the range 0 to 255.

In our example with mbr (-5 , 50), (0 , 55), each new
coordinate is given by

y = 255*(Latitude – 50)/(55 – 50) truncated to an integer

and

x = 255*(Longitude + 5)/(0 + 5) truncated to an integer.

The results of this conversion are listed in TABLE 70.

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 165 OF MIL-STD-2407

165

TABLE 70. Minimum and maximum spatial index coordinates.

Primitive
ids x1 y1 x2 y2
2 0 236 72 255
3 0 102 115 255
4 0 250 0 251
5 0 242 0 243
6 10 207 35 225
7 87 206 93 211
8 218 180 255 190
9 225 187 227 188

10 20 159 48 174
11 14 165 22 169
12 9 140 11 141
13 0 27 135 92
14 14 83 16 84
15 16 59 17 61
16 202 39 206 42
17 173 29 199 39
18 153 35 155 35
19 0 8 0 8

NOTE: Since face 1 (universe face) is a topological artifact (i.e. no
outer ring), the MBR in normalized coordinates cannot be calculated.
Therefore face 1 is not included in the bin data record portion of
the index. Further, no fsi is built for a face table containing only
the universe face.

When coordinates are stored as short floating point (data
types C and Z), different computer systems can generate
slightly different values due to conversion to long floating
point for normalization computations. When this occurs very
close to a cell break, it can cause the primitive MBR
normalized coordinates to fall in an incorrect cell. To
alleviate this problem, the following process should be
followed for computing normalized coordinate for any short
floating point coordinate value: after conversion to a long
floating point, truncate the coordinate value following the
third (3rd) decimal place before computing the normalized
coordinate.

If the MBRs of each primitive are plotted, they appear as
shown in FIGURE 52. In FIGURE 53, dividing lines have been
added to FIGURE 52 to show that primitive 13 is present in
both the left and right halves of the tile, and that primitive
3 is present in both the top and bottom halves of the tile.

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 166 OF MIL-STD-2407

166

0 255

0

255

9

8

1617
18

13

19

15

14

12

1011

6 7

3

2

5

4

1
(the

universe)

FIGURE 52. Location of MBRs in tile.

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 167 OF MIL-STD-2407

167

FIGURE 53. Tile content divided in four quarters.

F.4.4.1 Example of tree creation. The bucket size for
this example is set at eight. If a parent cell contains nine
or more primitives that can be propagated to the next level,
the parent splits into two children. The first split of the
tile puts primitives 8, 9, 16, 17, and 18 into cell 2 and
places primitive 3 into cell 3 (FIGURE 54). Primitive 13 must
be held in cell 1 (FIGURE 55) because neither of the split
cells contains the entire MBR for primitive 13.

Cell 3 (before the split into cells 6 and 7) contains twelve
primitives: 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 15, and 19.
Since this exceeds the defined bucket size, cell 3 is split
(FIGURE 54). The MBR of primitive 3 will cross the boundary
of cells 6 and 7.

0

255

12

1011

6 7

3

2

5

4

127

128

0

19

15

14

255

9

8

1
(the

universe)

128

1617
18

13

127

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 168 OF MIL-STD-2407

168

0 255

0

255

9

8

1617
18

3

127 128

Cell 3 Cell 2

FIGURE 54. First cell split.

Therefore it must remain in cell 3. Eleven primitives remain.
Based on each primitive’s MBR, the contents of the new cells
are: primitives 2, 4, 5, 6, 7, 10, 11, and 12 in cell 6 and
primitives 14, 15, and 19 in cell 7. Note that no primitives
are allocated to cells 4 and 5, since all five primitives on
the right half of the tile could be held in cell 2. The five
primitives do not ’over-flow’ the defined bucket size. All of
the primitives in this example have now been allocated to the
tree.

In theory, the process of splitting cells and distributing
primitives based on each primitive’s MBR and the bucket size

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 169 OF MIL-STD-2407

169

continues until no cell requires splitting or the subdivision
process reaches the bottom level of the grid-based binary tree
(where each cell is 1x1 in normalized coordinates). This implies
a grid-based binary tree with 17 levels and 131,071 cells (217 -
1). As noted in E.4.3, however, Product Specifications may limit
the number of cells allowed in the grid-based binary tree for
performance reasons.

The spatial index that results for this example is shown in
TABLE 71.

0 255

0

255

13

Cell 1

FIGURE 55. Content of cell 1.

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 170 OF MIL-STD-2407

170

0 255

0

255

19

15

14

12

1011

6 7

2

5

4

127 128

127

128

Cell 6

Cell 7

Cell 4
(empty)

Cell 5
(empty)

FIGURE 56. Second cell split.

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 171 OF MIL-STD-2407

171

TABLE 71. Example of spatial index.

Header:

Number of primitives: 18
MBR: -5.00, 50.00, 0.00, 55.00
Number of cells: 7

Bin Array Record:

Cell
(information not in

actual spatial index)

Offset Primitive
count

1 0 1
2 8 5
3 48 1
4 0 0
5 0 0
6 56 8
7 120 3

Bin Data Record:

Record
Number

Offset
Address

x1 y1 x2 y2 Primitive ids

Cell 1
1 0 0 26 135 93 13

Cell 2
2 8 153 35 155 35 18
3 16 173 29 199 39 17
4 24 202 39 206 42 16
5 32 226 187 227 188 9
6 40 218 180 255 190 8

Cell 3
7 48 0 102 115 255 3

Cell 6
8 56 87 206 93 211 7
9 64 10 206 35 225 6
10 72 0 242 0 243 5
11 80 0 250 0 252 4
12 88 0 236 72 255 2
13 96 20 159 48 175 10
14 104 14 165 22 169 11
15 112 9 140 11 141 12

Cell 7
16 120 0 8 0 8 19
17 128 16 59 17 61 15
18 136 14 83 16 84 14

F.4.5 Spatial query. A spatial index can support a
spatial query in several ways. For node primitives, software
may require the point to be within a specified distance of a
pixel designated

MIL-STD-2407
APPENDIX F

SUPERSEDES PAGE 172 OF MIL-STD-2407

172

during the query process, or within a box generated during the
query process. For an edge primitive, the software may
specify that candidate edges are to be within some specified
perpendicular distance of the query pixel or have MBRs that
intersect a query box. For a face primitive, the software may
define the candidate edges as having MBRs that intersect a
query box, be fully contained within the query MBR, or be
determined by solving the "point-in-polygon" puzzle. In any
case, the spatial index forms the starting point for the
database search. It works as follows:

a. The user designates a query point (pixel).

b. The software converts the query point into the
spatial index coordinate system ((0,0) to (255,255)).

c. The software tests all features within the top
level cell, if any, to determine if these features qualify for
the query response.

d. The software calculates the next smaller cell
containing the query point.

e. The software repeats the test (if necessary) and
continues to decrease cell size until no more records exist.

F.4.6 Spatial query using the sample tree.

a. The user designates a query point and the software
determines the normalized coordinates at (192, 32).

b. Beginning at the root of the tree, the software
goes to cell 1 and finds face 13.

c. The software checks the MBR of face 13 to determine
if it includes the query point.

d. Since face 13 does not include the query point the
software calculates the children of cell 1, which are cells 2
and 3. Cell 3 cannot contain the query point, so cell 2 is
examined. Faces 8, 9, 16, 17, and 18 are found.

e. The software checks the MBR of these faces to
determine if they include the query point.

f. The software reports the query result which is face
17.

